IEEE 1584-2018與2002年版的電弧閃絡計算公式,一樣都是在實驗室內改變各項參數以實驗所得數據推導歸納成數學計算公式,最新的2018年版比2002年版試驗的次數更多,所以,取得更詳盡的數據,推導出的公式也更為嚴謹, 顯然,必須依賴軟體程式才能節省時間及避免人為冗繁計算可能的錯誤。
IEEE 1584-2018執行電弧閃絡邊界 (AFB) 和電弧能量 (IE) 的計算共有11 個步驟,與2002年版之9個步驟略有差異,如下所示。
步驟 1:收集系統設備的參數
除了市電電源、發電機、變壓器、電動機和電纜等各項設備參數,還需包考慮各配電盤的尺寸大小。
步驟 2:確定系統運作模式
以一般簡單的輻射是配電系統架構通常考慮一種操作模式。
步驟 3:決定直接短路故障電流
步驟 4:確定典型間隙和外殼尺寸
導體之間的典型間隙如表 1 所示,並提供了有關每個電壓等級所用外殼尺寸的資料。
Table 1 Classes of equipment and typical bus gaps
Equipment class | Typical bus Gaps (mm) | Enclosure Size (H × W × D) |
SI units (metric) | ||
15 kV switchgear | 152 | 1143 × 762 × 762 mm |
15 kV MCC | 152 | 914.4 × 914.4 × 914.4 mm |
5 kV switchgear | 104 | 914.4 × 914.4 × 914.4 mm |
5 kV switchgear | 104 | 1143 × 762 × 762 mm |
5 kV MCC | 104 | 660.4 × 660.4 × 660.4 mm |
Low-voltage switchgear | 32 | 508 × 508 × 508 mm |
Shallow low-voltage MCCs and panel boards | 25 | 355.6 × 304.8mm × ≤203.2 mm |
Deep low-voltage MCCs and panel boards | 25 | 355.6 × 304.8mm × >203.2 mm |
Cable junction box | 13 | 355.6 × 304.8 mm × ≤203.2 mm or 355.6 × 304.8 mm × >203.2 mm |
Step 5:
根據其在電弧能量模型,電極配置之定義如下:
— VCB: Vertical conductors/electrodes inside a metal box/enclosure
— VCBB: Vertical conductors/electrodes terminated in an insulating barrier inside a metal box/enclosure
— HCB: Horizontal conductors/electrodes inside a metal box/enclosure
— VOA: Vertical conductors/electrodes in open air
— HOA: Horizontal conductors/electrodes in open air
Step 6:
根據設備類別,典型工作距離如表 2 所示。
Table 2 Classes of equipment and typical working distances
Equipment class | Working distance (mm) |
15 kV switchgear | 914.4 |
15 kV MCC | 914.4 |
5 kV switchgear | 914.4 |
5 kV MCC | 914.4 |
Low-voltage switchgear | 609.6 |
Shallow low-voltage MCCs and panelboards | 457.2 |
Deep low-voltage MCCs and panelboards | 457.2 |
Cable junction box | 457.2 |
Step 7: 決定電弧故障電流
1. 確定電極配置。
2. 若系統電壓為 600V < Voc ≤ 15 000V,則使用公式(1)找出 600V、2700V 和 14300V 處的中間值。然後以公式(2)、公式(3)、公式(4)求出電弧電流的最終值。
3. 若系統電壓為 208V ≤ Voc ≤ 600V,則使用公式(1)找出中間值(含 600V),然後以公式(5)找出最終值。
公式如下:
where
I bf: the bolted fault current for three-phase faults (symmetrical rms) (kA)
I arc_600: the average rms arcing current at Voc = 600 V (kA)
I arc_2700: the average rms arcing current at Voc = 2700 V (kA)
I arc_14300: the average rms arcing current at Voc =14 300 V (kA)
G: the gap distance between electrodes (mm)
k1 to k10: are the coefficients provided in Table 3
lg: log10
Table 3—Coefficients for Equation (1)
求最終值 (600 V < Voc ≤ 15000 V) (2)
where
I arc_1: the first I arc interpolation term between 600 V and 2700 V (kA)
I arc_2: the second I arc interpolation term used when Voc > 2700 V (kA)
I arc_3: the third I arc interpolation term used when Voc is < 2700 V (kA)
Voc: the open-circuit voltage (system voltage) (kV)
When 0.600 < Voc ≤ 2.7, the final value of arcing current is given as follows:
I arc = I arc_3
When Voc > 2.7, the final value of arcing current is given as follows:
I arc = I arc_2
求最終值 (Voc ≤ 600 V)
where
Voc:the open-circuit voltage (kV)
Ibf: the bolted fault current for three-phase faults (symmetrical rms) (kA)
Iarc: the final rms arcing current at the specified Voc (kA)
Iarc_600: the rms arcing current at Voc=600 V found using Equation (1) (kA)
Step 8:
電弧持續時間通常取決於延時過電流保護裝置的動作時間。
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。